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Motivation

The nature of light interaction with metal 
nanoparticle (MNP) or nanohole systems could 
lead to:

•    Nanoscale optical/opto-electronic devices

•    Novel chemical and biological sensors 

Lots of  interesting experiments are being carried 
out throughout the world -- theory and 
computation are needed!
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Chain of Ag Nanoparticles

Wiederrecht and co-workers (ANL):  AFM (topography) 
and NSOM (near field strengths) on Ag particle arrays

NSOMAFM

size ~ 100 nm width, periodicity ~ 200 nm
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Most potential applications aim to 
tap the properties of surface 
plasmons (SPs) -- resonant 
interactions of light with 
(induced) charge density in the 
MNP surface.

E.g.,  in Mirkin’s biological 
sensors, the SP resonance 
scattering blue-shifts when Au 
MNPs bind to DNA in manner 
shown.
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Origins of Surface Plasmons:  Re[ε] < 0 in Metals

ε2

ε1

ε(ω or λ=2πc/ω) = ε1 + i ε2

Ag
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Standard heuristic argument
E.o.m. for electron (in a metal) displacement in an electric field:

mÝ Ý x  +   (m /τ)  Ý x  =  − q  E x  e−iωt

x(t)  =  xo  e−iωt
Assume to get

xo  =  (q  E x /m) /(ω2 + iω /τ )

Polarization for number density n:

Px = n (−qxo)  =          χ εo E x
                            =   (ε  −  1)  εo  E x  Solve for relative dielectric constant, ε:

ε(ω)  =  1  −   ω p
2 /(ω2  +  iω /τ)

ω p  =  nq2 /mεo Drude model
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Surface Plasmons

For Re[ε] < 0, strong oscillations in electric charge are predicted 
which  allow for electromagnetic surface waves, which can have 
longitudinal components but decay rapidly away from a surface 
(“evanescent”)

Local Surface Plasmons (LSP’s) :  Confined to 
nanoparticle surfaces or nanohole inner surfaces; akin to 
bound (or resonance) states in QM.

Surface Plasmon Polaritons (SPP’s) :   Confined to metal 
surfaces but traveling surface plasmons. Typically generated 
on flat thin metal films.  
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Methods

“Real theory”, if possible,  is best but for exploring 
somewhat complicated nanophotonics systems 
robust, reasonably accurate and easy to use 
computational methods are also helpful.
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Finite-Difference Time-Domain (FDTD) Method

Basic idea and numerical method is somewhat old :

K. S. Yee, IEEE Trans. Antennas and 
Propagation, 14, 302 (1966).

Modern implementations are discussed in :

A Taflove and S. C. Hagness, Computational 
Electrodynamics: The Finite-Difference 
Time-Domain Method, 2nd Ed., (Artech 
House, Boston, 2000).
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• Solve t-dependent form of Maxwell’s equations:  
discretizing in both space and time to generate E(x, t)
and H(x, t) via straightforward time-stepping.

•   Staggered grids used for more accurate finite 
differences and preservation of certain symmetries.

•  Current fields are introduced to describe   
the  metallic dielectric constant behavior which can 
have Re[ε(ω)] < 0.
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Maxwell’s Equations

Outside each nanoparticle:
∂E(x,t)/∂t = ∇ x H(x,t)/ε(x) 
∂H(x,t)/∂t = -∇ x E(x,t)/µo

Inside each nanoparticle region:
∂E(x,t)/∂t = [∇ x H(x,t) - J(x,t)]/ε∞
∂H(x,t)/∂t = -∇ x E(x,t)/µo         

∂J(x,t)/∂t = εoωp
2 E(x,t)/µo -νJ(x,t)

(Parameters for current terms chosen to fit metal 
dielectric constant data in some frequency range)
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Metal Nanowires

Nanoscale cross 
sections with 
infinite extension 
out of (x,y) plane:
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FDTD approach is reasonably quantitative even for
frequency (or wavelength) resolved scattering

Symbols: FDTD result  based on Fourier transforms
of numerically generated, time-dependent fields
Curves:  Analytical results (“Mie theory”).

Single Ag cylinder,
radius 25 nm :

SP resonance
at 350 nm
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Funnel Configuration of Ag Nanowires
[Gray and Kupka, Phys. Rev. B 68, 045415 (2003)]

E field at 0.5 fs time intervals:

600 nm

Can achieve 100 nm nanoscale localization of light. 
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Time-averaged Flux
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Evanescent Excitation and Scattering of Ag Nanowires

• Wurtz, Im, and Wiederrecht:  find metal nanoparticles,
scatter light at small angles above dielectric/air 
interface in “Total Internal Reflection” experiments.

•   Calculations have begun to explore this process.
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TIR Excitation with FDTD [Wurtz et al., J. Phys. Chem. B. 51, 14191 
(2003)]

Left panels,  top to 
bottom, show TIR in 
absence of nanowire.

Right panels, top to 
bottom,  show what 
happens with a 50 nm 
radius Ag cylinder.

Glass (n=1.5) for 
y < 0, air (n=1) for 
y ≥ 0.
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Low angle scattering

1 particle/surface 1 particle, free space

Incident light closer to 
Ag SP resonance than 
the Au one.
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Nanoholes in Thin Metal Films (S.-H. Chang)

• Metal films with nanoscale holes are also 
of interest -- local SPs similar to those in 
metal nanoparticles can be excited on hole 
edges. Furthermore,  coupling to SPP’s can 
also occur.

• L. Yin, U. Welp, V. Vlasko-Vlasov and 
coworkers are exploring such nanoholes at 
Argonne.
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The  Type of Experiment  :
Scanning near field probe

Metal film (e.g., Au or Ag) with holes

Glass substrate with laser light 
propagating up to metal film
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Experimental Results: λ Fringes
170 nm diameter hole in a 100 nm thick Au film on glass.  530 nm
light. A view from the air-Au top: ≈ 470-480 nm fringes

x /nm

y /nm x-polarized light

5 µm
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λSPP  =  
εM +1

εM
 λinc  =   

−4.67 +1
−4.67

 532  nm  ≈  472  nm

E x ≈  C exp(ikSPP x)   

                         ⇒   I   =  E x E x
*   ≈  C2

But SPPs alone 
cannot be seen 
easily:

E x ≈   C exp(ikSPP x) + A exp(iS)Suppose instead:

Then:

I   =   E x E x
*   ≈   C2   +  A2   +   2CA  cos( kSPP x  +  S  )  

kSPP   =  2π / λSPP  ⇒  λSPP fringes

But what is A exp(iS) ?
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A exp(iS) =  T = a Directly Transmitted Wave

|Hole/Film|2 |Film|2

| Hole/Film - Pure Film|2

1 µm
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Poynting Vector

Flux upwards

Flux sideways

0.3 µm

2 µm



27

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Nanoholes act as “Point Sources” of SPP’s

• Near the top plane of the metal surface, we find:

E x (r,ϕ,z)   ∝   C  exp( ikSPP r − γ z )
r

cos(ϕ)   +   Tx

where x-polarized [cos(ϕ)] light is assumed.

• Despite  fact λinc, λSPP >  3 dhole, a limited kind of 
“Huygen’s   principle” appears to apply to planar 
SPP’s …



28

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Nanohole Arrays for Stronger SPP Beams

3 µm
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8

Can also explicitly model the NSOM probe
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Yin et al., Appl. Phys. Lett.
85, 467 (2004).

Probe develops dipolar 
oscillation with incident (x) 
polarization, interacts 
with/picks up information 
about |Ex |2 (not |Etot|2).
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Parallel (x) component shows more clear fringes
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Concluding Remarks

• Demonstrated FDTD approach can yield optical 
cross sections for metallic nanowire problems.

• Arrays of nanowires investigated:  funnel 
configurations show 100 nm scale localization of 
light.

• Total Internal Reflection (TIR) 
excitation/scattering by nanoparticle systems 
investigated.

• Nanoholes investigated -- demonstrated how 
SPP’s reveal themselves through interference.
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Future Directions

• Multiscale Modeling of Nanophotonics

• Coherent Control of Nanophotonics

• “Killer Apps” ??
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Multiscale Approach to Modeling Nanophotonics Problems:

Electro-
dynamics

Molecular
Dynamics

Gray, Schatz, 
Ratner, Stockman 
(ANL, NW, GSU)

Jellinek
(ANL)

Jellinek, Ogut, 
Jackson (ANL, 
UIC, CMU)

Applied Math/High-Performance Component Infrastructure
Fischer, Norris, Smith (ANL)

Electronic
Structure
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